Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures.
نویسندگان
چکیده
Chilling is a common abiotic stress that leads to economic losses in agriculture. By comparing the transcriptome of Arabidopsis under normal (22 degrees C) and chilling (13 degrees C) conditions, we have surveyed the molecular responses of a chilling-resistant plant to acclimate to a moderate reduction in temperature. The mRNA accumulation of approximately 20% of the approximately 8,000 genes analyzed was affected by chilling. In particular, a highly significant number of genes involved in protein biosynthesis displayed an increase in transcript abundance. We have analyzed the molecular phenotypes of 12 chilling-sensitive mutants exposed to 13 degrees C before any visible phenotype could be detected. The number and pattern of expression of chilling-responsive genes in the mutants were consistent with their final degree of chilling injury. The mRNA accumulation profiles for the chilling-lethal mutants chs1, chs2, and chs3 were highly similar and included extensive chilling-induced and mutant-specific alterations in gene expression. The expression pattern of the mutants upon chilling suggests that the normal function of the mutated loci prevents a damaging widespread effect of chilling on transcriptional regulation. In addition, we have identified 634 chilling-responsive genes with aberrant expression in all of the chilling-lethal mutants. This reference gene list, including genes related to lipid metabolism, chloroplast function, carbohydrate metabolism and free radical detoxification, represents a potential source for genes with a critical role in plant acclimation to suboptimal temperatures. The comparison of transcriptome profiles after transfer of Arabidopsis plants from 22 degrees C to 13 degrees C versus transfer to 4 degrees C suggests that quantitative and temporal differences exist between these molecular responses.
منابع مشابه
Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملCloning and Expression Analysis cf Two Photosynthetic Genes, PSI-H and LHCB1, Under Trehalose Feeding Conditions in Arabidipsis Seedlings
Trehalose (a-D-glucosyl-[1,1]-a-D-glucopyranoside) is involved in mechanisms that coordinate metabolism with plant growth adaptation and development. The main objective of the current work was to find out whether trehalose feeding affects the expression of two genes involved in photosynthesis: one gene coding for photosystem1 subunit H (PS1-H) and the other for the light harvesting complex B1 (...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 132 2 شماره
صفحات -
تاریخ انتشار 2003